A note on finite dual frame pairs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Oblique Dual Frame Pairs

Given a frame for a subspace W of a Hilbert space H , we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characterization which in some cases can be computationally more efficient. We first treat the case of a gener...

متن کامل

On dual Gabor frame pairs generated by polynomials ∗

We provide explicit constructions of particularly convenient dual pairs of Gabor frames. We prove that arbitrary polynomials restricted to sufficiently large intervals will generate Gabor frames, at least for small modulation parameters. Unfortunately, no similar function can generate a dual Gabor frame, but we prove that almost any such frame has a dual generated by a B-spline. Finally, for fr...

متن کامل

A Note on Zariski Pairs

Definition. A couple of complex reduced projective plane curves C1 and C2 of a same degree is said to make a Zariski pair, if there exist tubular neighborhoods T (Ci) ⊂ P of Ci for i = 1, 2 such that (T (C1), C1) and (T (C2), C2) are diffeomorphic, while the pairs (P, C1) and (P , C2) are not homeomorphic; that is, the singularities of C1 and C2 are topologically equivalent, but the embeddings ...

متن کامل

A Note on Frame Distributions

In the context of constructive locale or frame theory (locale theory over a fixed base locale), we study some aspects of ’frame distributions’, meaning sup preserving maps from a frame to the base frame. We derive a relationship between results of Jibladze-Johnstone and Bunge-Funk, and also descriptions in distribution terms, as well as in double negation terms, of the ’interior of closure’ ope...

متن کامل

Note on forcing pairs

The notion of forcing pairs is located in the study of quasi-random graphs. Roughly speaking, a pair of graphs (F, F ′) is called forcing if the following holds: Suppose for a sequence of graphs (Gn) there is a p > 0 such that the number of copies of F and the number of copies of F ′ in every graph Gn of the sequence (Gn) is approximately the same as the expected value in the random graph G(n, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2012-11256-0